Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study.

نویسندگان

  • Takashi Yokoi
  • Hiroyuki Shinohara
  • Hideo Onishi
چکیده

UNLABELLED Iterative reconstruction techniques such as an ordered subsets-expectation maximization (OSEM) algorithm can easily incorporated various physical models of attenuation or scatter. We implemented OSEM reconstruction algorithm incorporating compensation for distance-dependent blurring due to the collimator in SPECT. The algorithm was examined by computer simulation to estimate the accuracy for brain perfusion study. METHODS The detector response was assumed to be a two-dimensional Gauss function and the width of the function varied linearly with the source-to-detector distance. The attenuation compensation (AC) was also included. To investigate the properties of the algorithm, we performed computer simulations with the point source and digital brain phantoms. In the point source phantom, the uniformity of FWHM for the radial, tangential and longitudinal directions was evaluated on the reconstruction image. As for the brain phantom, quantitative accuracy was estimated by comparing the reconstructed images with the true image by the mean square error (MSE) and the ratio of gray and white matter counts (G/W). Both noise free and noisy simulations were examined. RESULTS In the point source simulation, FWHM in radial, tangential and longitudinal directions were 14.7, 14.7 and 15.0 mm at the image center and were 15.9, 9.83 and 10.6 mm at a distance of 15 cm from the center by using FBP, respectively. On the other hand, they were 8.12, 8.12 and 7.83 mm at the image center, and were 7.45, 7.44 and 7.01 mm at 15 cm from the center by OSEM with distance-dependent resolution compensation (DRC). An isotropic and stationary resolution was obtained at any location by OSEM with DRC. The spatial resolution was also improved about 6.5 mm by OSEM with DRC at the image center. In the brain phantom simulation, the blurring at the edge of the brain structure was eliminated by using OSEM with both DRC and AC. The G/W was 2.95 and 2.68 for noise free and noisy cases, respectively, when no compensation was performed. But the values for G/W without and with noise became 3.45 and 3.21 with AC only and were improved to 3.75 and 3.71 with both AC and DRC. The G/W approached the true value (4.00) by using OSEM with both AC and DRC even when there was statistical noise. CONCLUSION In conclusion, OSEM reconstruction including the distance-dependent resolution compensation algorithm was reasonably successful in achieving isotropic and stationary resolution and improving the quantitative accuracy for brain perfusion SPECT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework

Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT.  In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...

متن کامل

Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom

Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...

متن کامل

Evaluation of the role of system matrix in SPECT images reconstructed by OSEM technique

  Introduction: Ordered subset expectation maximization (OSEM), is an effective iterative method for SPECT image reconstruction. The aim of this study is the evaluation of the role of system matrix in OSEM image reconstruction method using four different physical beam radiation models with three detection configurations. Methods: SPECT was done with an arc of 180 deg...

متن کامل

Evaluation of iterative reconstruction method and attenuation correction on brain dopamine transporter SPECT using anthropomorphic striatal phantom

Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods.Methods: An anthropomorphic striatal phant...

متن کامل

Implementation of Sensitivity and Resolution Modeling for SPECT with Cone-Beam Collimator

We implemented a fully-3D ordered subsets expectation maximization (OSEM) algorithm with compensation of attenuation, distance-dependent blurring (DDB) and sensitivity modeling for SPECT performed with cone-beam collimator (CBC). The experimentally obtained detector response to point sources across FOV was fitted to a twodimensional Gauss function with its width (FWHM) varied linearly with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of nuclear medicine

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2002